
PATHOLOGICAL IMAGE SEGMENTATION FOR NEUROBLASTOMA USING THE GPU

Antonio Ruiz
�
, Jun Kong

� �

, Manuel Ujaldon
�
, Kim Boyer

�

, Joel Saltz
�

, Metin Gurcan
�

�
Dept. of Computer Architecture, University of Malaga, Malaga (Spain)

�

Dept. of Electrical and Computer Engineering, Ohio State University, Columbus, OH (USA)
�

Dept. of Biomedical Informatics, Ohio State University, Columbus, OH (USA)

ABSTRACT
We present a novel use of GPUs (Graphics Processing Units)

for the analysis of histopathological images of neuroblastoma,

a childhood cancer. Thanks to the advent of modern mi-

croscopy scanners, whole-slide histopathological images can

now be acquired but the computational costs to analyze these

images using sophisticated image analysis algorithms are usu-

ally high. In this study, we have implemented previously

developed image analysis algorithms using GPUs to exploit

their outstanding processing power and memory bandwidth.

The resulting GPU code was contrasted and combined with

a C++ implementation on a multicore CPU to maximize par-

allelism on emerging architectures. Our codes were tested

on different classes of images, with performance gain factors

about 5.6x when the execution time of a Matlab code running

on the CPU is compared with a code running jointly on CPU

and GPU.

Index Terms— Neuroblastoma, segmentation, differenti-

ation grading, computer-aided prognosis, GPU.

1. INTRODUCTION

Neuroblastoma (NB) is an embryonal tumor usually originat-

ing from the sympathetic nervous system [1]. Due to the large

variation in its morphological structure, the prognosis of this

disease is challenging and it affects the treatment plan. In cur-

rent clinical practice, neuroblastoma classification is carried

out by highly trained pathologists with visual examinations

of pathological slides under the microscope according to the

International Neuroblastoma Classification System developed

by Shimada et al.

Visual evaluation of histopathological slides may lead to

large intra- and inter-reader variability. A recent study reports

that there is a 20% discrepancy between central and institu-

tional reviewers for neuroblastoma prognosis [2]. Since it is

This work was partially supported by the US National Science Founda-

tion (#CNS-0643969, #CNS-0403342, #CNS-0615155, #CCF-0342615), by

the NIH NIBIB BISTI (#P20EB000591), NCI caBIG core middleware de-

velopment (79077CBS10), Ministry of Education of Spain (PR-2007-0014)

and Junta de Andalucı́a of Spain (P06-TIC-02109). The authors would like

to thank Dr. Hiroyuki Shimada for providing the neuroblastoma images, for
guidance and helpful discussions.

now possible to digitize neuroblastoma slides, these digital

images can be analyzed using the computer. The quantita-

tive information provided by the computer analysis may lead

to better reproducibility. Additionally, the computer can an-

alyze every location in each slide and for every slide of the

tumor, therefore reducing the chances of mis-prognosis due

to visual sampling of heterogenous tumors.

We are developing computer-assisted prognosis (CAP)

system for neuroblastoma (NB-CAP). This system analyzes

the content of neuroblastoma slides and quantifies the mor-

phological features used in neuroblastoma prognosis. A ma-

jor component of this system involves the analysis of grade of

differentiation. We have developed algorithms to determine

the percentages of grade of differentiation in a given slide as

undifferenting, poorly-differentiating and differentiated [3].

These percentages can then be used in the decision tree of the

prognosis system.

One of the key steps in NB-CAP system is segmentation

of basic histological components for grade of differentiation

analysis. In our previous study, we developed a novel seg-

mentation algorithm called EMLDA [3]. Due to large sizes

of the neuroblastoma slides and the computational demands

of the algorithm, it takes a long time to run. Therefore, we

explored a multi-resolution approach and feature selection al-

gorithms to reduce the execution times [4]. In the multi-

resolution approach, the image is processed by dividing it into

tiles and each tile is analyzed at the lowest resolution first.

If the processing results are satisfactory, the execution stops.

Otherwise, the image is processed at the next higher resolu-

tion. Not all the features are necessary at different resolutions

and an automated feature selection algorithm is employed to

select the most discriminating features. Fewer features re-

quire less time to calculate.

In addition to the algorithmic approaches to reduce the

computational demands, novel architectures can be used to

speed up the execution times. Our work explores the power of

GPUs and combine them with multicore CPUs to accelerate

the processing of histopathological images. Data bandwidth

and arithmetic intensity is fully exploited in our graphics im-

plementation and different ways of parallelism are enabled in

our combined (GPU and CPU) implementation to determine

the optimal execution.

296978-1-4244-2003-2/08/$25.00 ©2008 IEEE ISBI 2008

(a) EMLDA segmented. (b) K-means segmented.

Fig. 1. Outputs of (a) EMLDA and (b) K-means segmentation

algorithms for an undifferentiated neuroblastoma image.

2. COMPUTERIZED SEGMENTATION ON
NEUROBLASTOMA IMAGES

In this study, the input images are produced using a digital

scanner (ScanScope T2 digitizer, Aperio, San Diego, CA) that

digitizes neuroblastoma biopsies sliced at 5 � � and dyed with

haematoxylin and eosin (H&E) stains. For each H&E image,

four cytological components, namely nuclei, cytoplasm, neu-

ropil and inter-cellular white space are to be identified. Two

segmentation methods, EMLDA and K-means, are applied to

H&E images for partitioning different components in our in-

vestigations.

2.1. Statistical feature construction

Cytological components in an H&E image typically exhibit

distinct colors, which can be used for their characterization.

For instance, nuclei regions usually appear as dark blue color;

blue-purple colors often indicate the cytoplasm regions, and

neuropil components are, in most cases, characterized by

pink. In addition to the color information, the local color

change associated with each tissue structure also provides a

rich source of discriminative information to segment images.

As a result, a feature vector to represent and identify different

cytological components is established using both information

extracted from color and texture analysis. This vector con-

tains a total of six elements. The first three components are

the � , � � and � � color channels, as the � � � � � color space

preserves the color perceptual uniformity, and the last three

components are the texture counterpart consisting of entropy

statistics computed with a 9 � 9 window shifting across the R,

G, and B color channels.

2.2. Segmentation algorithms

2.2.1. EMLDA

We have developed a novel segmentation algorithm, called

EMLDA (Expectation-Maximization Linear Discriminant

Analysis) [3]. The EMLDA fuses the Fisher-Rao crite-

rion into the generic Expectation-Maximization algorithm.

On each iteration, it maximizes the Fisher-Rao criterion

and estimates the parametric distributions. Let us denote� � � � � � � � � �
as the data set consisting of � classes

in the feature space, where p is the dimension of the fea-

ture space. The cost function to be maximized can then be

described as follows:

 " $ � & (� � $ + - / " & ($ �� $ + - 6 " & ($ � (1)

where
$

is a 9 � : matrix where each column is a discriminant

vector, : < � ? A ;
&

is the labeling configuration coming

from the previous step, and
- /

and
- 6

are the between- and

within-class scatter matrices that are symmetric and positive-

definite [5].

Each feature data
�

is then mapped to a correspondence B�
in a lower dimensional subspace of C �

using the discriminant

vectors from the matrix
$ � " & (

that maximizes
 " $ � & (

.

B� � � B� � B� � C H � J L N B� � P $ � " & (R + �
(2)

where the new subspace spanned by
� T �U " & (W T �X " & (W Z Z Z W T �H " & (�

,

i.e. columns of
$ � " & (

, is the subspace where the dataB� � � B� � B� � C H �
can be best discriminated in terms of

the Fisher-Rao criterion.

Next, we update the label configuration from
&

to B&
in

terms of the rule that the updated label of each data in the

reduced dimensional space is the one associated with the class

having the shortest distance from its centroid.

The above two steps are then iteratively conducted until " $ � & (
starts decreasing after a minimum number of itera-

tions (10 in our application). To initialize this iterative pro-

cess, we obtain the initial label configuration
& _

by the classi-

cal K-means clustering method.

2.2.2. K-means

In our previous work, we compared the processing times by

one of the standard segmentation algorithms: K-means.

K-means is an unsupervised method where an iterative pro-

cess aims at minimizing a cost function:

 " & (� ab c
d U

e f h j kbl d U n � c l ? �
c " & (n X

(3)

where � is the number of components to be identified,
&

is

the labelling configuration,
� c l is the o p r feature data

" o �� A W t W Z Z Z W w c " & (� (
in the y p r component, and �

c " & (
is the

centroid of the class y .

By repeating the assignment of feature data to classes

having the closest centroids and the estimation of class-

conditional centroids, we can approach the local minimum

of the cost function. When
 " & (

converges to the minimum,

297

(a) Differentiated. (b) Poorly-differentiated. (c) Undifferentiated.

Fig. 2. Evolution of the clustering process during the first eight iterations for each of our segmentation methods under different

types of input images: (a) Differentiated. (b) Poorly-differentiated. (c) Undifferentiated.

each group of the image pixels having one distinct class label

represents one segmented object component.

2.3. Convergence speed

In order to assess the computational cost of each of the two

segmentation methods, we evaluated their convergence speed

for the three input images with a different grade of neurob-

lastic differentiation: differentiated, poorly-differentiated,

and undifferentiated. Figure 2 outlines the behavior of each

method during the first eight iterations. We selected the num-

ber of pixels changing from its previously assigned class as

a rough estimate of the stability of the classifying process as

well as its convergence speed. Figure 2 shows that the un-

differentiated class requires a less number of iterations using

K-means and the other two classes are more in favor of the

EMLDA.

When comparable final recognition accuracies are achieved

on 129 test images, the mean and standard deviation of the

computational cost associated with the EMLDA are 13.6 and

4.93 seconds, whereas for the K-means are 29.6 and 9.92

seconds, respectively [3].

3. GPU IMPLEMENTATION

We implemented both the EMLDA and K-means based seg-

mentation methods using CUDA so that a comparison in run-

ning times in GPU can be made. CUDA [6] is a high-level

programming interface consisting of a set of library functions

which can be coded as an extension to the C language. A com-

piler generates executable code for the GPU, which is treated

by the CPU as a multicore co-processor.

For the programmer, the CUDA model is a collection

of threads running in parallel which divide the hardware

resources equally among themselves, with each thread and

block having a unique ID accessed during its execution to

process different sets of data in a SIMD (Single Instruction

Multiple Data) fashion.

In CUDA, all threads can access any memory location, but

performance boosts with the use of shared memory, whenever

data to be collectively read belong to different memory banks.

This way, the CUDA design does not suffer from constraints

when accessing memory, though the access times vary for dif-

ferent types of memory.

Algorithms with higher number of conditional statements

slow down the GPU implementation. This is because the GPU

is a platform aimed for a streaming execution model where

data require to be independent from each other, and, prefer-

ably, on a single data flow. Although the C++ implementa-

tion of the EMLDA algorithm per iteration is faster than the

K-means algorithm for the specific problem we are studying,

the CUDA implementation reversed the execution time order.

We can distinguish two parts of the EMLDA algorithm

from the GPU implementation viewpoint. The expectation-

maximization evaluation requires many data dependencies

and conditional statements. Most of these could not be op-

timized on the GPU, hence they need to be executed on the

CPU. Then, the LDA part (Eq. 2) consists mostly of matrix

algebra operations, which are more favorable to a SIMD type

processing, in particular, to the GPU’s ability to simultane-

ously process almost one hundred operations on concurrent

pixel processors. The most computationally demanding part

of the EMLDA algorithm was the computation of the gener-

alized version of the eigenvectors required for LDA.

The K-means algorithm requires few conditional state-

ments and the most time consuming step is the distance op-

erator. This operator is very common to graphics process-

ing, which makes it straightforward to be mapped onto the

GPU, resulting in fast execution. Since it contains less num-

ber of conditional statements, K-means can perform more

bulk processing. Therefore, this algorithm can take advan-

tage of memory bandwidth more generously and results in

less computational cost for a single iteration on the GPU.

4. EXPERIMENTAL RESULTS

To demonstrate the effectiveness of our computational op-

timization using the GPU, we have conducted a number of

experiments on a state-of-the-art computer equipped with

Nvidia GeForce 8800 GPU at 575 MHz and a Intel Core 2

Duo CPU running at 2.13 GHz.

298

CPU execution Time per pixel

Image size time using C++ (in nanoseconds)

59412 � 64990 2485 secs. 643.58 ns.

53614 � 103754 10118 secs. 1818.55 ns.

68443 � 75607 6081 secs. 1175.12 ns.

Average 60490 � 81450 6228 secs. 1212.35 ns.

Table 1. Execution times for the segmentation on the CPU on

different input images using C++ and our EMLDA clustering

method. The average time spent is one hour and 45 minutes.

Clustering C++ execution CUDA execution Speed-up

method time (CPU) time (GPU) on GPU

EMLDA 174 msc. 120 msc. 1.45x

K-means 220 msc. 64 msc. 3.43x

Table 2. Execution times in milliseconds per iteration on each

hardware platform for a single 512x512 image tile.

Table 1 lists the calculation times for three sample images

when implemented in C++ running on CPU. The average size

of the image is 60K � 81K, which takes several hours to run

in Matlab. This running time was reduced to one hour and 45

minutes on the CPU by implementing the methods in C++.

The C++ implementation also provides a more realistic com-

parison with our CUDA code on the GPU.

Table 2 shows the execution times on both platforms for

a single iteration on a 512x512 image tile. As anticipated,

K-means achieves a better speed-up factor per iteration of

3.43x on the GPU, whereas the EMLDA benefits from a mod-

est 1.45x acceleration. Consequently, the EMLDA becomes

twice slower than the K-means on the GPU and slightly faster

on the CPU. However, the EMLDA requires less number of

iterations than K-means on average when run on NB images,

that is, it is 2.13 times faster in the convergence process.

We may select both methods to run on the GPU, but that

will result in an idle CPU. The best approach consists of en-

abling a bi-processor platform to engage the GPU contribu-

tion, and then process a proportional number of tiles on each

processor to maximize parallelism depending on the segmen-

tation method. This requires a marginal participation of the

CPU acting as host of the GPU code for shipping data; for this

purpose, the second CPU core is enabled and communications

are handled using asynchronous capabilities of CUDA.

For a 53614x103754 input image, a total of 13727 tiles

of 512x512 pixels were processed after discarding those tiles

determined as background. When using EMLDA, the CPU

segments 5602 tiles and the GPU processes 8125 tiles for a

total time of 975 seconds per iteration on each side. When

selecting K-means, the CPU takes 3093 tiles and the GPU

10634, leading to an overall time of 680.5 seconds. Since the

total execution time for the input image is 5465 seconds per

iteration using Matlab and EMLDA, we achieve an overall

speed-up factor of 5.6x when enabling the CPU-GPU com-

bined execution outlined throughout this paper. Also, an ad-

ditional 1.43x improvement factor would be attained for those

cases in which the K-means segmentation method would re-

quire a similar number of iterations to converge as EMLDA.

5. CONCLUSIONS

In this paper we present a novel computational architecture

to process histopathological images. The implementation de-

tails are illustrated through a computer-aided prognosis ap-

plication for neuroblastoma (NB-CAP). After implementing

two alternative forms of a time-consuming step in NB-CAP,

we analyzed the trade-offs for an efficient implementation of

each segmentation method. The implementation was done by

translating the original Matlab code into a compiled C++ ver-

sion, and then implementing the same algorithm on a GPU

using CUDA. This implementation revealed that one partic-

ular segmentation algorithm (EMLDA) is more appropriate

to be implemented using the CPU architecture, whereas the

other algorithm (K-means) has better properties for a stream-

ing execution on the GPU.

The GPU is particularly suitable for pathological image

analysis because it provides streaming programming and

huge memory bandwidth for very large scale input images.

GPUs are highly scalable and evolve towards general-purpose

architectures [7], where we envision biomedical image pro-

cessing as one of the most exciting fields to benefit from

subsequent developments.

6. REFERENCES

[1] F. Alexander, “Neuroblastoma,” The Urologic Clinics of
North America, vol. 27, pp. 383–392, 2000.

[2] L.A. Teot, R.S.A. Khayat, S. Qualman, G. Reaman, and

D. Parham, “The problems and promise of central pathol-

ogy review: Development of a standardized procedure for

the children’s oncology group,” Pediatric and Develop-
mental Pathology, vol. 10, pp. 199–207, 2007.

[3] J. Kong, H. Shimada, K. Boyer, J. Saltz, and M. Gur-

can, “Image analysis for automated assessment of grade

of neuroblastic differentiation,” in Intl. Symposium on
Biomedical Imaging, 2007, pp. 61–64.

[4] J. Kong, O. Sertel, H. Shimada, K. Boyer, J. Saltz, and

M. Gurcan, “Computer-aided grading of neuroblastic

differentiation: Multi-resolution and multi-classifier ap-

proach,” in Proceedings IEEE ICIP 2007.

[5] G.J. McLachlan, “Discriminant analysis and statistical

pattern recognition,” Wiley-Interscience, 1992.

[6] CUDA, http://developer.nvidia.com/object/cuda.html.

[7] GPGPU, A web site dedicated to the general-purpose on

the GPU: http://www.gpgpu.org.

299

